Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Garsin, Danielle A (Ed.)Sex determination in the nematodeC.elegansis controlled by the master regulator XOL-1 during embryogenesis. Expression ofxol-1is dependent on the ratio of X chromosomes and autosomes, which differs between XX hermaphrodites and XO males. In males,xol-1is highly expressed and in hermaphrodites,xol-1is expressed at very low levels. XOL-1 activity is known to be critical for the proper development ofC.elegansmales, but its low expression was considered to be of minimal importance in the development of hermaphrodite embryos. Our study reveals that XOL-1 plays an important role as a regulator of developmental timing during hermaphrodite embryogenesis. Using a combination of imaging and bioinformatics techniques, we found that hermaphrodite embryos have an accelerated rate of cell division, as well as a more developmentally advanced transcriptional program whenxol-1is lost. Further analyses reveal that XOL-1 is responsible for regulating the timing of initiation of dosage compensation on the X chromosomes, and the appropriate expression of sex-biased transcriptional programs in hermaphrodites. We found thatxol-1mutant embryos overexpress the H3K9 methyltransferase MET-2 and have an altered H3K9me landscape. Some of these effects of the loss ofxol-1gene were reversed by the loss ofmet-2. These findings demonstrate that XOL-1 plays an important role as a developmental regulator in embryos of both sexes, and that MET-2 acts as a downstream effector of XOL-1 activity in hermaphrodites.more » « less
-
Drosophila immune priming to Enterococcus faecalis relies on immune tolerance rather than resistanceGarsin, Danielle A. (Ed.)Innate immune priming increases an organism’s survival of a second infection after an initial, non-lethal infection. We usedDrosophila melanogasterand an insect-derived strain ofEnterococcus faecalisto study transcriptional control of priming. In contrast to other pathogens, the enhanced survival in primed animals does not correlate with decreasedE.faecalisload. Further analysis shows that primed organisms tolerate, rather than resist infection. Using RNA-seq of immune tissues, we found many genes were upregulated in only primed flies, suggesting a distinct transcriptional program in response to initial and secondary infections. In contrast, few genes continuously express throughout the experiment or more efficiently re-activate upon reinfection. Priming experiments in immune deficient mutants revealed Imd is largely dispensable for responding to a single infection but needed to fully prime. Together, this indicates the fly’s innate immune response is plastic—differing in immune strategy, transcriptional program, and pathway use depending on infection history.more » « less
-
Garsin, Danielle A. (Ed.)ABSTRACT Transmission is a crucial step in all pathogen life cycles. As such, certain species have evolved complex traits that increase their chances to find and invade new hosts. Fungal species that hijack insect behaviors are evident examples. Many of these “zombie-making” entomopathogens cause their hosts to exhibit heightened activity, seek out elevated positions, and display body postures that promote spore dispersal, all with specific circadian timing. Answering how fungal entomopathogens manipulate their hosts will increase our understanding of molecular aspects underlying fungus-insect interactions, pathogen-host coevolution, and the regulation of animal behavior. It may also lead to the discovery of novel bioactive compounds, given that the fungi involved have traditionally been understudied. This minireview summarizes and discusses recent work on zombie-making fungi of the orders Hypocreales and Entomophthorales that has resulted in hypotheses regarding the mechanisms that drive fungal manipulation of insect behavior. We discuss mechanical processes, host chemical signaling pathways, and fungal secreted effectors proposed to be involved in establishing pathogen-adaptive behaviors. Additionally, we touch on effectors’ possible modes of action and how the convergent evolution of host manipulation could have given rise to the many parallels in observed behaviors across fungus-insect systems and beyond. However, the hypothesized mechanisms of behavior manipulation have yet to be proven. We, therefore, also suggest avenues of research that would move the field toward a more quantitative future.more » « less
-
Garsin, Danielle A. (Ed.)Bacterial microcompartments (BMCs) confine a diverse array of metabolic reactions within a selectively permeable protein shell, allowing for specialized biochemistry that would be less efficient or altogether impossible without compartmentalization. BMCs play critical roles in carbon fixation, carbon source utilization, and pathogenesis. Despite their prevalence and importance in bacterial metabolism, little is known about BMC “homeostasis,” a term we use here to encompass BMC assembly, composition, size, copy-number, maintenance, turnover, positioning, and ultimately, function in the cell. The carbon-fixing carboxysome is one of the most well-studied BMCs with regard to mechanisms of self-assembly and subcellular organization. In this minireview, we focus on the only known BMC positioning system to date—the maintenance of carboxysome distribution (Mcd) system, which spatially organizes carboxysomes. We describe the two-component McdAB system and its proposed diffusion-ratchet mechanism for carboxysome positioning. We then discuss the prevalence of McdAB systems among carboxysome-containing bacteria and highlight recent evidence suggesting how liquid-liquid phase separation (LLPS) may play critical roles in carboxysome homeostasis. We end with an outline of future work on the carboxysome distribution system and a perspective on how other BMCs may be spatially regulated. We anticipate that a deeper understanding of BMC organization, including nontraditional homeostasis mechanisms involving LLPS and ATP-driven organization, is on the horizon.more » « less
An official website of the United States government
